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RADIATION FROM SLOTS ON CYLINDRICAL BODIES 

USING GEOMETRICAL THEORY OF DIFFRACTION 

AND CREEPING WAVE THEORY* 

By Constantine A. Balanis 
Langley Research Center 

SUMMARY 

A hybrid solution employing wedge diffraction and creeping wave theories is used 
to compute the radiation patterns of axial and circumferential slots in the principal planes 
(equatorial and elevation) on conducting cylinders of finite and infinite lengths. The slots 
are excited by parallel-plate waveguides operating in the TEM and TEIO modes. 

superposition of two fields, that is, the wedge-diffracted and the creeping-wave fields. 
The wedge-diffracted field is obtained by approximating the parallel-plate-cylinder 
geometry with two wedges, each formed by a wall of the waveguide and a tangent plane to 
the cylinder surface at the edge point. The creeping-wave contribution is obtained by the 
use of diffraction and propagation coefficients of waves traveling around conducting 
curved surfaces. The total field in the shadow region is obtained solely from the 
creeping-wave contribution. 
niques for the entire pattern are employed. 

For the equatorial-plane pattern, the total field in the lit region is obtained by the 

For the elevation-plane pattern, wedge diffraction tech- 

The method is checked computationally by comparison with the modal solutions for  
axial and circumferential slots on right circular cylinders and experimentally for ellip- 
tical cylinders since modal solutions are not readily available. Experimental models 
are also used for the verification of the elevation plane pattern computations since 
boundary -value solutions are not available for finite length cylinders. 

Computed resu l t s  using this technique compare favorably with those obtained from 
existing modal expansion boundary-value solutions and experimental results. The main 
advantages of the present technique are that it can be applied to geometries where modal 
solutions are not possible, in numerical ranges where the convergence properties of 
modal expansions are relatively poor, in parametric design problems since the contribu- 
tion from each field is separated, and in the analysis of antennas with finite physical 
sizes. 

*he material presented herein was offered as a dissertation in partial fulfillment 
of the requirements for the Degree of Doctor of Philosophy, The Ohio State University, 
Columbus, Ohio, June 1969. 



INTRODUCTION 

Since the geometrical theory of diffraction has  been introduced, it has  been 
employed successfully in the solution of various types of diffraction problems. Previous 
work in applying the wedge diffraction and creeping wave theories, each one individually, 
to scattering and radiation antenna problems is discussed. No one has  attempted a 
hybrid solution with both wedge diffraction and creeping wave theories used for the same 
scatterer. The work presented in this report  is an attempt to formulate a hybrid solu- 
tion employing both wedge diffraction and creeping wave theories on the same antenna. 
The antenna is a slotted, axially and circumferentially, conducting cylinder, with the 
slots being excited by parallel-plate waveguides operating in the TEM and TEIO modes. 

The radiation properties of slot antennas on conducting cylinders have been studied 
extensively. (See refs. 1 to 5.) Such analyses have been restricted to geometries where 
modal expansion field functions are readily available and whose physical length is infinite. 
Moreover, the solutions obtained exhibit poor convergent properties for objects more 
than a few wavelengths in extent. However, many practical problems involve slot 
antennas mounted on finite-size conducting bodies whose geometrical shape does not con- 
form to a coordinate system where the wave equation is separable. Wedge diffraction 
(refs. 6 to 9) and creeping wave theories a r e  used in the analysis presented herein to 
compute the radiation patterns of axial and circumferential slots on conducting cylinders 
of finite and infinite lengths. The method employed is an extension of the geometrical 
theory of diffraction (refs. 10 and 11) and creeping wave theory (refs. 12 to 16). 

The geometrical theory of diffraction and creeping wave theory a r e  extensions of 
geometrical optics which account for diffraction. They introduce diffracted r ays  in addi- 
tion to the usual rays of geometrical optics. These diffracted r ays  a r e  produced by 
incident r ays  which hit edges, corners, vertices, or curved surfaces. Some of these dif- 
fracted r ays  enter the shadow regions and account for the field intensity there. The dis- 
tribution of the incident energy among those diffracted r ays  is described by a diffraction 
coefficient. The diffraction of the incident r ays  is a local phenomenon, so the diffraction 
coefficient depends on the geometry of the edge o r  curved surface in the vicinity of the 
point of diffraction and on the polarization of the incident field. 

A field is associated with each diffracted ray and the total field at a point is the 
sum of the fields of all rays  at that point. The phase of the field on a ray is assumed to 
be proportional to the optical length of the ray from some reference point. Appropriate 
phase jumps must be added as a ray passes  through a caustic (congruence of r ays  at a 
point or line). The amplitude is assumed to vary in accordance with the principle of 
conservation of energy in a narrow tube of rays. The initial value of the field on a dif- 
fracted ray  is determined from the incident field with the aid of an appropriate diffraction 
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coefficient. 
problems. 

These diffraction coefficients are determined from certain canonical 

The canonical problem, which yields the diffraction coefficient for an edge, is the 
diffraction of a linearly polarized plane wave by a two-dimensional, infinite wedge. The 
diffraction coefficient is found from Sommerfeld's asymptotic, high frequency solution to 
this problem. Pauli (ref. 18) has obtained a practical formulation for the 
diffraction coefficient and Hutchins (ref. 19) has  generalized it. He has obtained a series 
solution which is valid for  the exterior and interior regions of a wedge. In addition, h i s  
solution is accurate for wedges of large included angles whereas the Pauli solution is not 
accurate. Oberhettinger (ref. 20) has  obtained a similar series in which the leading 
te rm is identical to the Fresnel integral form for half-plane diffraction. 
Hutchins tends to bridge the solutions of Pauli and Oberhettinger. 

(See ref. 17.) 

The work of 

The primary task in applying the creeping wave theory is the determination of the 
diffraction, attenuation, and ray-path factors for a general body (and it is not yet always 
practical). Thus, it is necessary to evaluate these factors  fo r  canonical targets whose 
exact solutions are available, such as the cylinder and sphere. (See refs. 12 to 16 and 
21 to 23.) In order  to obtain a more  general solution for these factors it is convenient 
to utilize experimental data to validate an empirical model for more general targets such 
as the prolate spheroid (refs. 24 to 26). 

The attenuation and diffraction coefficients fo r  a cylinder have been obtained by 
comparing the asymptotic series of the scattering boundary-value solution with that of 
the diffraction problem formulation (refs. 13 to 16). The ray paths along the surface of 
the cylinder are geodesics (great circles). The scattering by a sphere is, however, a 
most important problem. The classical solution of Mie using separation of variables 
and series techniques can be considered as the starting point. Senior and Goodrich 
(ref. 21) have obtained an asymptotic form to the Mie series solution for the sphere 
through the application of the Watson transformation. Hong (ref. 22) has derived attenu- 
ation and diffraction coefficients with higher -order correction terms. The formidable 
task of implementing this solution numerically has  yet to be accomplished. 

An approach to the general formulation of the creeping-wave paths m bodies of 
revolution has  been developed by Kinber (ref. 27). Kinber has  shown that the wave equa- 
tion may be expanded in a set of ray coordinates in which the solution can be written in a 
form whose magnitude is dependent upon the c r o s s  section of the ray tube and whose 
phase is dependent only upon the propagation constant and path length traversed. 

The empirical approach utilizes a simplified ray-path geometry to determine 
approximate attenuation and diffraction coefficients for a sphere. (See refs. 24 to 26.) 
This approach is of interest  in that it lends itself for  extension to more general targets, 
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and is a simplified creeping wave analysis. It uses  a single nonconvergent (and non- 
divergent) ray  path together with approximate diffraction and attenuation coefficients to 
construct an approximate solution for  the scattered field due to creeping waves propa- 
gating in each direction along the ray  path. The path chosen is the path traversed by the 
"major" ray (that is, the path corresponding to the E-plane of the sphere). This  analysis 
suggests that an approximate picture of scattering by a sphere can be constructed by 
neglecting the creeping waves which have a radial magnetic field (that is, the "minor" 
creeping waves) and by considering only the creeping waves which have a radial electric 
field (that is, the "major" creeping waves) except for the H-plane scattered fields. 

The prolate spheroid represents  a body for which an exact closed-form solution is 
not available except on the axis of rotation. In order  to find the ray-path geometries of 
the prolate spheriod for an arbi t rary angle of incidence, the geodesic corresponding to 
the point of attachment and the tangent direction at that point must be calculated. The 
determination of the tangent direction of the creeping wave at the shadow boundary is not 
an easy task in general. It is therefore suggested that the simplified ray-path geometry 
(refs. 24 to 26) for the sphere can be applied to the prolate spheriod. In this case, the 
creeping-wave paths a r e  elliptical; thus, the total attenuation must be expressed as an 
integral which is dependent upon the radius of curvature along the path. Also the radius 
of curvature at the points of attachment and reradiation must be computed in order  to 
determine the diffraction coefficient. The specific solution for the prolate spheriod has  
been presented by Ryan (refs. 24 and 26) and Pe te r s  and Ryan (ref. 25). 

Many other antenna problems have been treated using wedge diffraction techniques. 
RUSSO, Rudduck, and Pe te r s  (ref. 28) applied the geometrical theory of diffraction to cal-  
culate the total antenna pattern of a horn in the E-plane, including the backlobe region. 
Because the theoretical and experimental patterns are in excellent agreement, the method 
for treating diffraction by edges is valid. Obha (ref. 29) used the geometrical method of 
diffraction to calculate the radiation pattern and gain of a finite width corner reflector 
antenna. This method also yields good results for the computation of backscattering 
from an antenna having conducting plates finite in extent. 

Extensive work of applying the wedge diffraction method to waveguides has  been 
carr ied out by Rudduck and coworkers (refs. 6 to 9). The principal tool employed is 
diffraction by a conducting wedge; the resulting electromagnetic field may be treated as 
a superposition of the geometrical optics field and the diffracted field which behaves as 
a cylindrical wave radiating from the edge of the wedges. These techniques may be 
applied to any two-dimensional antenna or  scattering body which may be constructed 
from a set  of wedges; the radiation or  scattering pattern may be obtained for any excita- 
tion which can be expressed in t e rms  of plane or cylindrical waves by superposition of 
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the individual wedge diffractions. Some elementary examples include parallel-plate 
waveguides, walls of finite thiclmess, and polygonal cylinders. 

A basic feature of this technique is that it does not require an assumption of the 
value of the total field o r  current  on some surface, as do conventional methods of aper- 
ture integration which employ the approximation of physical optics. This feature thus 
allows more accurate treatment of problems than ordinarily obtained by approximate 
methods; it also provides knowledge of the fields in t e r m s  of the incident field, which 
results in the ability to analytically determine admittance and gain of antennas (ref. 6), 
radiation patterns (refs. 7 and 8), mutual coupling (refs. 30 and 31), and reflection coef- 
ficient (refs. 32 to 34). 

The geometrical ray techniques of this method provide conceptual simplicity with 
which solutions may be formulated. This, together with superposition of wedges, allows 
structural aspects to be taken into account; for example, antennas mounted with and with- 
out ground planes, structures with thin or thick walls, and arbi t rary waveguide trunca- 
tions can be treated. In addition, the fields in all space can be determined; thus, back- 
lobe regions can be treated. 

The essential feature of this approach is that it is applicable to all types of com- 
plicated problems, some of which a r e  not tractable. The approach is to resolve a 
complicated problem into simpler ones, each of which will have a relatively simple solu- 
tion. 
problems as the wedge, cylinder, and sphere, which can be put together to solve more 
complicated problems. 

The basic building blocks will be rigorous solutions to such canonical diffraction 

The work outlined in this hybrid solution is for general conducting cylinders of 
arbi t rary convex c r o s s  section. However, computations a r e  restricted to circular cyl- 
inders for which boundary-value solutions exist for comparison and elliptical cylinders 
for which models and experimental data are available for comparison. The radiation 
patterns of interest for each case a r e  the principal-plane patterns, equatorial plane and 
elevation plane in the usual spherical coordinate system. 

The equatorial-plane pattern is obtained by the superposition of diffracted fields 

The set of wedges approximate the parallel-plate-cylinder geometry in the 
from a set of wedges and creeping-wave fields propagating around the surface of the 
cylinder. 
vicinity of the discontinuity formed by the waveguide and the cylinder. Each wedge is 
formed by a wall of the parallel-plate waveguide and the tangent plane to the cylinder 
surface at the edge point. 

For the equatorial-plane pattern, two distinct regions can be identified: the lit 
and shadow regions. The shadow region encompasses the space occupied by the set  of 
wedges and cylinder surface and the lit region the remaining space. The total field in 
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the lit region is obtained by the superposition of two fields - that is, the wedge-diffracted 
and creeping-wave fields. The total field in the shadow region is obtained solely from 
the creeping-wave contribution. For the elevation-plane pattern, wedge diffraction tech- 
niques for the entire pattern are employed. 

The most interesting par t  of this hybrid solution is the coupling mechanism between 
the wedge-diffracted and creeping-wave fields. Creeping waves are launched by the tip 
of the wedges in a direction tangent to the cylinder surface at the edge point. Since the 
field must be continuous along the line separating the lit and shadow regions, the wedge- 
diffracted fields along the surface of each wedge will be used as the initial value of the 
creeping waves to preserve the continuity of the fields. The creeping waves continually 
radiate energy in a tangential direction as they propagate around the cylinder surface 
until they reach the opposite wall of the slot and again illuminate the wedges; this is a 
second-order field contribution and it is neglected. The loss  of energy due to reradia- 
tion is accounted for  by the use of an attenuation factor. 

The method is checked computationally by comparison with the modal solutions for  
axial and circumferential slots on right circular cylinders and experimentally for ellip- 
tical cylinders since modal solutions are not readily available. Experimental models 
are used for the verification of the elevation-plane-pattern computations since boundary- 
value solutions are not available for finite-length cylinders. 

Computed results from this technique compare favorably with those obtained from 
The main existing modal expansion boundary-value solutions and experimental results. 

advantages of the present technique are that it can be applied (1) to geometries where 
modal solutions a r e  not possible, (2) in numerical ranges where the convergence prop- 
erties of modal expansions a r e  relatively poor, (3) in parametric design problems since 
the contribution from each field is separated, and (4) in the analysis of antennas with 
finite physical sizes. 

SYMBOLS 

No attempt has been made to define all the symbols used in this report  in a single 
list; most symbols used in this analysis are defined by diagrams for the various geom- 
etries. The following symbols are used as main symbols with appropriate subscripts 
throughout the analysis: 

D diffraction coefficient 

E electromagnetic field 
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EC creeping-wave field 

ED wedge -diff racted field 

EG geometrical optics field 

ET total field 

RD diffracted ray . , 

reflected r a y  %FL 

a! attenuation constant 

k phase constant 

WA wedge angle 

Numerical subscripts indicate particular wedge. 

Superscripts within parentheses indicate order of diffraction. 

WEDGE DIFFRACTION 

Wedge diffraction techniques a r e  applied for the analysis of the radiation pattern 
of the parallel-plate waveguide shown in figure 1. 
using the wedge diffraction concepts by Rudduck and his coworkers (refs. 6 to 9). Their 
solution is incorporated in the slotted-cylinder radiation-pattern analysis and is outlined 
in this section. A single-diffracted wave emanates from each wedge that is illuminated 
by an incident plane wave. 
the other with double-diffracted fields being produced. 
o rde r s  of diffraction. 

This geometry has  been treated by 

The single-diffracted waves produced by one wedge illuminate 
This process continues to higher 

Single Diffraction 

The principal method employed in the analysis of a parallel-plate waveguide is dif- 
fraction by a conducting wedge. The diffraction of a plane wave by a wedge was solved 
by Sommerfeld (ref. 17). Pauli (ref. 18) obtained a practical formulation of the solution 
for a finite angle conducting wedge which was later improved by Hutchins (ref. 19). (See 
the appendix.) The total electromagnetic field from the wedge may be treated as the 
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Figure 1.- Geometry of a parallel-plate waveguide aperture. 

O b s e r v a t i o n  \ 
p o i n t  \ / 

I n c i d e n t  
p l a n e  wave 

/ 

Figure 2.- Geometry for  plane wave wedge dif fract ion w i th  geometrical optics 
region. 
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superposition of the geometrical optics and the diffracted fields which behave as cylin- 
drical  waves radiating from the edge of the wedges. 

The diffraction of a plane wave by a wedge is shown in figure 2. The solution to 
the plane-wave diffraction problem may be expressed in t e rms  of scalar functions that 
represent  the normal and parallel polarization components of the electromagnetic field 
to the plane of study in figure 2. The total field is defined as 

E =  E G +  ED 

where EG is the geometrical optics field and ED is the diffracted field. The dif- 
fracted field is given by 

where the parameters  r, I&, +bo, n a r e  shown in figure 2 and VB(r, $w,b0, n) is 
the diffraction function as defined in the appendix. 
zation of the electric field normal to the edge 

The plus sign applies for the polari- 

where n is the unit normal to the edge of the wedge. The minus sign applies for the 
polarization parallel to the edge 

Ewedge = (4) 

The geometrical optics field is defined in three regions. 
incidence, the geometrical optics field is 

(See fig. 2.) For plane-wave 

Geometrical - Incident Reflected 
optics field - geometrical field * geometrical field 

= e  jk r  cos  (+- +o) 
EG 

0 - - 
EG 

The t ime dependence ejwt is used throughout this analysis. 
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The diffracted wave ED may be represented as a cylindrical wave radiating from 
the edge. 
removed from shadow boundaries, ED has  the radial dependence e-jkr/(F. Because 
of this cylindrical nature, subsequent diffractions of a diffracted wave may be treated as 
the diffraction of a cylindrical wave by a wedge. 

(See the appendix.) In fact, at large distances from the edge and in regions 

Diffraction b y  Pair of Wedges 

The process  of diffraction by a pair of wedges (parallel-plate waveguide) is now 
outlined. 
TEM and TEIO waveguide modes shown in figure 3. In the TEM mode, the incident plane 

Two polarizations which must be distinguished are those corresponding to the 

t Inc iden t  f -  t 

f 
/ rl 

(a) TEM mode. 

f 

(b) TElO mode. 

Figure 3.- TEM and TElO modes in a parallel-plate waveguide aperture. 
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wave is parallel to the axis of the guide having a polarization perpendicular to the edge Of 

each wedge. 
reflect obliquely back and forth between the waveguide walls. Thus, in the 
TElO mode the incident plane waves have a polarization parallel to the edge of the wedges. 

TEM mode.- In the TEM mode an incident plane wave propagates parallel to the 

The TEIO waveguide mode may be represented by two TEM waves which 
(See ref. 35.) 

axis of the guide walls as shown in figure 3(a). The far-zone singly diffracted fields 
f rom wedges 1 and 2 are given by 

(r29 +2 ) =  

-j(k.1+$) - sin - a 
E, e nl "1 L 

d2akr a +  @1 
cos - a - cos - 

"1 nl 

1 a 
E2e "2 sin "2 

d2 7rkr a - $2 
cos - 7r - cos- 

"2 "2 

(9) 

The superscripts denote the order  of diffraction. 
respect to edge @ is expressed as 

If the phase of the incident waves with 

and 

g 
-jkw cot @ - jkw cot + 

E2 = Ee g =  e 

then equations (8) and (9) reduce to 

I '  



where RD1 (1) (@l) and RD2 (1) ( @ z ) ,  the singly diffracted r ays  from wedges 1 and 2, are 

given by 

1 7T - sin - 
"1 "1 

"1 nl 
= +  $1 

cos  - - cos  - 

-jkw cot $g 
7T e - sin - 

"2 "2 
= - $2 

cos - = - cos  - 
"2 "2 

Applying the far-field approximations 

for phase t e r m s  and 

for amplitude t e rms  with 

r1 = r2 = ro 

gives 
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and 

The singly diffracted r ays  may again be diffracted to produce doubly diffracted rays  and 
so on to higher o rde r s  of diffraction as shown in figure 4. The singly diffracted ray RD1 (1) 

illuminating edge 8 gives rise to the doubly diffracted ray RD2; (2) RgJ causes RD1 (2 ) 
in a similar manner. Also, some of the singly diffracted r ays  from edge 0 a r e  reflected 

Figure 4.- Doubly diffracted and reflected rays of a general parallel-plate waveguide. 
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from wedge 2 and appear to radiate from the image of edge 0 ; these reflected r a y s  are 
given as 

where 

(1) - (1) 
RD2G - RD2 ('-@g) 

An additional doubly diffracted ray by edge 0 from the image source is given by 

R$lR ($0) = R g j p k B  kw, f' $0, nl) + 'B (aw, 2' 3n $ 0 9  

where 

R g i p  = Rg]  (- z )  (2 7) 

The total diffracted r ays  from edges @ and 0, by using single-double diffractions, are 
expressed as 

RD1(@o) = R g ] ( @ O )  Rg](@o) RgiR(@O) (28) 
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and the reflected ray from wedge 2 as 

The total diffracted field from the aperture may be expressed as the superposition 
of the total diffracted r ays  f rom edges a and a plus the total r ays  from the image 
source to yield 

Each te rm in equation (31) contributes to the radiation pattern only in certain regions as 
follows: 

There are subsequent diffractj 

Region I 

is which result  in third- and higher-order diffrac- 
tions f rom edges 0 and 0. The total higher-order diffractions (that is, second and 
higher order) can be put in a closed form. 
from edge 0 can be expressed as 

(See ref. 6.) The total illumination of edge @ 

where R ( G o )  is the total diffracted ray from edge 0. Consequently, the total higher- 
order  diffractions from edge 0 are given by 
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R2 ($0) = R:; ($0) + e; ($0) 
The total higher-order illumination of edge @ is given by 

R2G = R2 ('- @g) 

(34) 

(3 5) 

and 

Thus, the total higher-order diffractions from edge 0 are given by 

and the total diffractions by 

The total diffracted field from the aperture can be expressed as the superposition 
of the total diffracted r ays  from edges 0 and @ plus the total reflected ray as given by 
equation (31) where RD1 (+o), R~~ ($o) ,  and RD1 ( -$o)  are replaced by ~1 ($o) ,  
R2 ($o ) ,  and Rl(-$o), respectively. 

The total diffracted waves from edges @ and @ are given in t e r m s  of the unknown 
illuminating r ays  RIG, R2G, and Rlp. These r ays  can be determined by the solution 
of three simultaneous linear equations formed by expressing each unknown ray in t e r m s  
of equation (34) or  equation (38) and are given as follows: 
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where the quantities VIG, Vlp, and VZG are the unit-wave diffractions used in equa- 

tions (33) and (37). 

TEIO mode.- The diffraction at the aperture of the parallel-plate waveguide for  the 

TEIO mode may be treated in a similar manner as the TEM mode. The TEIO mode may 
be represented by two plane waves reflecting obliquely back and forth between the wave- 
guide walls at an angle 

as shown in figure 3(b). The wave has  a polarization parallel to the edges of the wedges 
which form the waveguide walls. 
follows: 

For  this mode two cases must be distinguished as 

Case I: A0 ' @g 

Case 11: A0 5 $g 

For case I, edge @ is not illuminated by the incident plane wave and no singly diffracted 
ray emanates. 
singly diffracted r ays  emanate from both edges. 

For case 11, both edges are illuminated by the incident wave; hence, 

Since the polarization is parallel to  the edges of the guide for the TEIO mode, the 
negative sign in the diffraction formula is chosen. 
is obtained from equation (2) as 

The singly diffracted ray from edge a 

(1) 1 1 1 

cos - = - cos  
= + $0 + A0 RD1 ($0) = < sin e( = cos = + $0 - A0 

cos  - - 
"1 "1 "1 "1 
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For case  II (& 5 @g), the singly diffracted ray from edge @ is given by 

R~~ (1) (+o)  = - - 1 sin R e - jkw(s inAo+cot  GgcosAO) 1 1 
n - $ , - A  

"2 "2 e- c o s  O c o s ~ - c o s  
"2 "2 "2 

where the exponential factor and minus sign represent  the phase of the incident plane 
wave at edge 0. The reflected rays  a r e  given by 

where the preceding minus sign results from the reflection. 

Multiple diffractions occur in the same manner as for the TEM mode but with the 
minus sign chosen in equations (22), (24), (26), (33), and (37). 
diffracted waves from edges 0 and @ for the TEIO mode a r e  given by 

Thus the total higher-order 

and 

The minus sign preceding RIP results in the same manner as for the reflected r ays  of 
equation (45). 
in the same equations valid fo r  the TEM mode, that is, equations (34) and (38) to (41). 
The unknown illuminating r ays  a r e  determined in the same manner as for the TEM mode 

The total wave from each edge is obtained by using the TEIO mode r ays  

by using the formulations for RD1, (1) RD2, (1) RD1, 04 and RE; given for the TEIO mode. 

CREEPING-WAVE DIFFRACTION CONCEPT 

When a wave is incident upon an opaque object which is large compared to the wave- 
length, a shadow is formed. However, some radiation penetrates into the shadow region 
due to diffracted r ays  as shown in figure 5. (See refs. 12 to 16.) These rays  a r e  pro-  
duced by incident rays  which are tangent to the surface of the body. Each tangent ray 
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Figure 5.- General concept of creeping-wave diffraction. 

spli ts  at the point of tangency with one par t  continuing along the path of the incident ray 
and the other traveling along a geodesic on the surface of the body. At each following 
point, it splits again with one par t  traveling along the geodesic and the other reradiating 
along a tangent to the geodesic. 
r ays  are produced, one of which is reradiated at each point of the geodesic. These waves 
traveling around the opaque body have been designated as creeping waves introduced first 
by Franz and Deppermann (ref. 12) for the interpretation of scalar diffraction by circular 
cylinders and spheres. 

From a single incident ray, infinitely many diffracted 

The scattered field caused by the creeping wave mechanism for a plane wave inci- 
dent on a cylinder is given by (ref. 13) 
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which for a right circular cylinder reduces to 

since the radius of curvature is constant. The diffraction coefficients and attenuation 
constant are given by 

2 -I 12 
Dmh = Dmh(Q) Dmh(P) = Diffraction Coefficients e (kp)lI3dm 

$k 

[4 i2/3?% %h = Attenuation constant = - ( k ~ ) l / ~  1 %(4m + N) 
2P 

where 

P radius of curvature of body 

k phase constant 

t path length along body 

S distance from point of detachment to observation point 

P point of detachment of creeping wave 

Q point of attachment of creeping wave 

For a hard surface (E-field normal to the surface) do = 1.083, d l  = 0.555, and N = 1; 
for a soft surface (E-field parallel to the surface) do = 0.645, d l  = 0.490, and N = 3. 
The diffraction coefficients and attenuation constants are obtained by comparing the 
asymptotic series expansion for large values of kp of the canonical boundary-value 
problem with equation (48). (See refs. 13 and 14.) 

Rays diffracted by the edges of a slotted cylinder (shown in fig. 6) which are tan- 
gent to the surface of the cylinder behave in a similar manner. At each apex point addi- 
tional diffracted r ays  are introduced, each of which will travel along the surface of the 
cylinder and will reradiate tangentially. The creeping-wave field for a slotted conducting 
cylinder can be expressed as 
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Figure 6.- Slotted-cylinder creeping-wave fields. 

E only the lowest-order creeping-wave mode is considered, equation (52) reduces to 

-jk(tl+sl) -$’ %hb) ds  
e 

fi EC(S,@) = Ei(Q1) Doh(Q1) Doh(pl) e 

-jk(tZ+s2) -p CYoh(p)dS 

+ Ei(Q2) Doh(Q2) D0h(P2) e e (53) 
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and for a circular cylinder simplifies to 

-jk( t2+r) 
e -00ht2 

+ Ei(Q2) DEh(Q2) e J;" (54) 

since the local radius of curvature is the same at P1, Pa, Q1, and Q2. The far-zone 
edge diffracted fields a r e  equated to the creeping-wave fields at the shadow boundary to 
assure  continuity of the fields across  the boundary between the lit and shadow regions. 
For the geometry of figure 7, the angular variation of the wedge-diffracted fields along 
the shadow boundaries is given by 

In other words, the angular variation of the wedge-diffracted fields along the shadow 
boundary is used as the initial value of the angular variations of the creeping waves. 
Thus, RA and RB serve as the coupling mechanisms between wedge-diffracted and 
creeping waves which assure  field continuity along the shadow boundaries. 
wave field for a circular cylinder can then be expressed as 

The creeping- 

where 

and 

- j k( t -jk( t2+r) 
-&oh% e e 'aoht2 e e 

EC('?@) = RA fi (57) 
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i' 
Figure 7.- Far-zone creeping-wave field coordinates. 

For a noncircular cylinder the diffraction coefficient 
of curvature; therefore, the creeping-wave field must be multiplied by Doh(P)/Doh(Q) 
to give 

Doh is a function of the radius of 

-jk(tl+sl) -fl aoh(p) dS 
e DOh(P1) e 

EC(S, $1 = RA D 
oh('1) fi 

t 2  
-jk(t2+s2) -J aOhb) d s  

0 + R  D0h(P2) e e 
BDoh(Q2) fi 

The wedge approximation of the parallel-plate-cylinder geometry does alter the 
physical boundaries of the antenna structure and the diffraction mechanism of the fields, 
especially in the penumbra region. 
@ = *(; + C) directions travel along the boundaries of the wedges. However, in the 

For the wedge approximation, the fields in the 
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actual antenna structure some of the energy is trapped on the surface of the cylinder and 
travels along the curved surface reradiating in a tangential direction. Thus the wedge- 
diffracted and creeping-wave fields in the transition region (penumbra) will not satisfy 
the field boundary conditions. However, computations carried out by using such a model 
compare favorably with existing boundary -value solutions and experimental data. There- 
fore, such a model would be a valid approximation of the structure as far as the diffrac- 
tion mechanism of the fields is concerned and equations (55) and (56) would serve  as the 
coupling mechanisms between wedge -diffracted and creeping-wave fields. 

CIRCULAR CYLINDER RADIATION 

The wedge diffraction and creeping wave techniques are first applied for the calcu- 
lation of the equatorial radiation patterns of axial and circumferential slots on circular 
conducting cylinders of infinite length. Boundary-value solutions for slots on circular 
cylinders with common feeds exist and a r e  used for comparison. Once the method is 
verified, it is employed for pattern calculations of slots whose field distribution is such 
that modal solutions do not exist and to bodies whose geometric shape does not conform 
to a coordinate system where the wave equation is separable. In addition, the elevation- 
plane pattern for finite-length cylinders is analyzed. It should be pointed out that no 
boundary-value solutions for  finite-length cylinders exist, and experimental resu l t s  are 
used for comparison. The diffraction contributions from the edges of the cylinder and 
the effect of the finite-width aperture  to the overall pattern are observed. Pattern calcu- 
lations for more complex geometries such as an elliptical cylinder are carr ied out in the 
section "Elliptical Cylinder Radiation." 

Equatorial-Plane Pattern of Axial Slots Operating in TEM Mode 

The two-dimensional diffraction geometry for an axial slot mounted on a circular  
cylinder and operating in the TEM mode is shown in figure 8. The junctions formed by 
the walls of the parallel-plate waveguide and the planes tangent to the surface of the 
cylinder at the edge points are represented by a pair  of infinite wedges of finite included 
angle, WA = (2 - n)r. Two regions, lit and shadow, are formed by the imaginary sides 
of the finite wedges as shown in figure 8. 

For @ = 90' of figure 3(a), RD1 ( - C # I ~ )  = 0, R D I R ( G o )  = 0, h = w, n l  = n2 = n, g 
then equation (31) for the wedge-diffracted field reduces to 
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Figure 8.- Lit  and shadow regions for c i rcu lar  cylinder. 

A shift of coordinates from the aperture to the center of the cylinder is convenient, so 
that common coordinates will  be used for wedge-diffracted and creeping-wave fields. If 
the far -field approximations 

ro = r - a cos  $I cos p 

for phase t e r m s  and 

ro = r 

for amplitude t e r m s  with 
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are assumed, the total wedge-diffracted field is expressed as 

The creeping-wave contribution as expressed by equation (57) is given by 

The wedge-diffracted and creeping-wave fields, the e - j k Y 6  factor being sup- 
pressed, are given by 

sin @+acos @ cos  
- j b s i n  ("1 (67) 

and 

In general, the total field is equal to the sum of the two fields 

However, wedge-diffracted and creeping-wave fields do not exist in all regions. To find 
the total field in each region, the appropriate wedge-diffracted and creeping-wave fields 
must be considered as they are tabulated in table I. 

Radiation patterns computed by using the boundary-value solution of Wait (ref. 3) 
and the fields from table I in their  respective regions for the diffracted-field solution are 
shown in figures 9 and 10. The second- and higher-order diffractions are approximated 
by wedge diffractions resulting from uniform cylindrical waves. Diffracted waves 
resemble cylindrical waves if they are observed sufficiently far away from any shadow 
boundary that results from their source. 
treated as uniform cylindrical waves for guide widths down to about X/5. However, 
third- and higher-order diffractions are not very accurate when @g = 90' since they 
are viewed at the shadow boundary formed by their source (ref. 32) and the solution is 
more accurate for wider slots. 

The doubly diffracted waves can be adequately 
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TABLE I.- WEDGE-DIFFRACTED AND CREEPING-WAVE FIELDS FOR EQUATORIAL-PLANE PATTERN 

Region I 

o <  Q c z -  p 
2 

Region II 

2 2 
L . . p < + s L  

Region III 
E < Q  sL+ p 
2 2  

Region IV 

% +  p <  Q s n  

OF CIRCULAR CYLINDER IN DIFFERENT REGIONS 

Wedge-diffracted field, 
ED(@) 

e (R1 + R2e-jkw sin @) Jznlt 

0 

Creeping-wave field, 
E&) 

-tl(aoh+jk) 4 2  (ooh+jk) 
RA" + RB" 

-t aoh+jk) 
%e 2 (  

-t aoh+jk) -t aoh+jk) 
EA' '( + R B e  '( 

tz 

a ( - c p + g -  p) 

a (-Q + g - p) 

a ( - + + ? -  p) 

a ( - Q + ? - p )  

The solutions which consider only first- and second-order diffractions have a dis- 
continuity in the $ = *90° directions because higher-order diffractions are neglected. 
The discontinuity and variation from the boundary-value solution in the $ = +90° direc- 
tions are greater for smaller guide widths. The solution which takes into account 
higher-order diffractions eliminates the discontinuity, but it is not very accurate in the 
geometrical shadow boundary region (penumbra) since the assumption of uniform cylin- 
drical  waves is not satisfied for third- and higher-order diffractions. 

This analysis is more accurate for large ka cylinders since the decaying expo- 
nents of the surface waves a r e  derived from asymptotic series for large ka. When this 
approach is used, the computations for large ka cylinders do not require any additional 
details from those of small  ka. 
for large ka cylinders are not very convenient since Bessel functions of large order  
and argument are not readily available. Also, the convergence of the radiation pattern 
function becomes poor for large ka, and higher-order t e r m s  must be included (about 
2ka terms). From an economic point of view, large ka value computations using the 
boundary-value solution require considerably more computer time compared with the 
corresponding diffracted-field solution (about a factor of 50) since higher-order t e r m s  
must be included for convergence. 

In contrast, the boundary-value-solution computations 

As the value of ka  increases, the field in the shadow region -(E+ P) > @ >(!+ P) 
decreases and the ripples start to appear at larger  angles. It is noted that the period of 
the ripples is approximately 180°/ka. A field plot (voltage against angle) for the cylinder 

27 



Diffracted-field 
Diffracted-field - - - - - - - 

0 - 4  

(multiple diffractions) @-i 

Figure 9.- Radiation patterns of axial in f in i te  slot on smaller c i rcu la r  conducting cylinder using f in i te  wedges (TEM mode). 
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Figure 10.- Radiation patterns of axial in f in i te  slot on larger c i rcular conducting cylinder using f ini te wedges (TEM mode). 
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with ka = 12 and w/X = 0.2 is shown in figure 11. The variations between the 
boundary-value and wedge-diffracted solutions and the field discontinuity along the 
@ = &90° directions a r e  more  noticeable on a linear scale. The agreement would be 
significantly improved for la rger  cylinders with wider plate separations as shown for  
the cylinder with ka = 36 and w/X = 0.4 in figure 12. 

D i f f r a c t e d - f i e l d  (mul t ip le  d i f f r a c t i o n s )  
_ _ _ _ _ _  D i f f r a c t e d - f i e l d  ( s ingle-double  d i f f r a c t i o n s )  
- Boundary-value 

90° 

180° 

Figure 11.- Field plot of axial in f in i te  slot on c i rcular conducting cylinder (ka = 12, w / h  = 0.2) using f in i te  wedges 
(TEM mode). 
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D i f f r a c t e d - f i e l d  (mult ip le  d i f f r a c t i o n s )  
----- D i f f r a c t e d - f i e l d  ( s ingle-double  d i f f r a c t i o n s )  
- Boundary-value 

4 no 

Figure 12.- Field plot of axial i n f i n i t e  slot on c i rcu la r  conducting cylinder (ka = 36, w/h = 0.4) us ing  f in i te  wedges 
(TEM mode). 

Up to now, the parallel-plate-cylinder geometry has  been approximated by a set 
of wedges of finite included angle (n # 2) each formed by a wall of the parallel plate and 
a tangent plane to the cylinder surface at the edge point. For the far field, it would be 
the presence of the conducting wall for the wedge geometry of figure 3 that would force 
the field to be ze ro  at = a - WA. However, there is no such conducting wall in the far 
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field of the geometry of figure 6 and it is only the edge that needs to be considered. 
Sommerfeld (ref. 17) points out that patterns on precise diffraction photographs exhibit 
almost no dependence on the material and shape of the diffraction edge, and a glass  sur- 
face with radius of curvature of several meters  yields essentially the same diffraction 
fringes as the edge of a razor. Another possible approximation of the parallel-plate- 
cylinder geometry will be a half-plane (wedge with n = 2) instead of a finite wedge 
(n # 2). This approximation becomes necessary for the TEIO mode because the wedge- 
diffracted field along the artificial wedge surface separating the lit and shadow regions 
for the finite-wedge approximation is zero. Thus, no creeping waves will be traveling 
around the cylinder surface for the TEIO mode and no fields in the shadow region. Since 
this is not true, the half -plane approximation becomes necessary. 

However, to verify the validity of the approximations - finite wedge (n # 2) and 
half-plane (n = 2) - both models are used for the computation of patterns for TEM 
and TEIO mode slots and compared with boundary-value solutions and experimental 
results. 

It was found, by comparison, that another approximation for the TEM mode slot on 
a circular cylinder was to replace the edge 0 geometry by a half-plane (n = 2) for the 
first-order diffraction and by a finite wedge (n # 2) for  second- and higher-order diffrac- 
tions for the 0' to 180' pattern measured in the counterclockwise direction. The edge @ 
geometry was replaced by a finite wedge for all o rde r s  of diffraction. 
to 360' pattern, the approximations of edge 0 geometry are valid for edge @ and vice 
versa.  

For the 180' 

The computed resul ts  using these approximations are shown in figures 13 and 14 
where they are compared with the boundary-value solution. These approximations 
result  in better accuracies for  smaller guide widths around the penumbra region than the 
finite-wedge approximation used for figures 9 and 10. However, the finite-wedge approx- 
imation gives better results in the lit region as it should since the fields in the lit region 
are more strongly dependent on the geometry of the edge of the wedge, whereas the far 
fields in the penumbra region would be dependent on the fields on the walls of the wedge. 
It is then concluded that both approximations are valid and a combination of the wedge 
approximations dependent on the location of the observation point would yield optimum 
results. As a first order of approximation, either one of the suggested models may be 
used. A field plot for the cylinder with ka = 12 and w/X = 0.2 cylinder is shown in 
figure 15. 
this plot when compared with the one in figure 11. 

The accuracy of this approximation of the penumbra region is better seen in 

As was pointed out earlier, many models for the parallel-plate-cylinder geometry 
would give good results as a first-order approximation. Another suggested model for 
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w / h  = 0.2. 180" 180° w / h  = 0.4. 

Figure 13.- Radiation patterns of axial infinite slot on smaller circular conducting cylinder using half-plane 
and finite wedges (TEM mode). 
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Diffracted-field fmultiple diffractions1 no 

(C) 
w/A = 6.2. 180° 180" w/A = 0.4. 

Figure 14.- Radiation patterns of axial in f in i te  slot on larger c i rcu la r  conducting cylinder using half-plane 
and f in i te  wedges (TEM mode). 
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D i f f r a c t e d - f i e l d  (mul t ip le  d i f f r a c t i o n s )  ------ D i f f r a c t e d - f i e l d  (s ingle-double d i f f r a c t i o n s )  
- Boundary-value 

270' 9 

180' 

Figure 15.- Field plot of axial i n f i n i t e  slot on  c i rcu la r  conducting cylinder us ing  half-plane and f in i te  wedges (TEM mode). 

the parallel-plate-cylinder geometry would be a set of half-planes (n = 2 for all o rde r s  
of diffractions). Computed results using such a model are shown in figure 16 where rea- 
sonable agreement between the boundary-value and diffracted solutions is indicated. 

Sometimes it may be desirable to have the maximum radiation oriented at a given 
angle other than the zero-degree direction described previously. One way of accom- 
plishing this would be to have the feed of the waveguide mounted in a slanted position. 
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Figure 16.- Radiation pattern of axial i n f i n i t e  slot on  c i rcu la r  conducting cyl inder us ing  half-planes (TEM mode). 

TEM mode propagation along the parallel plate is assumed but the aperture-field 
distribution will not be uniform in this case. 
on a cylinder in a slanted position has no boundary-value solution. 
of diffracted fields can be used to obtain the radiation pattern. The two-dimensional 

Propagation of this mode in a guide mounted 
However, the technique 
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geometry of this mode is shown in figure 17. The modified equation for the diffracted 
field is given by 

where 

@ g = T - €  n 

h = -  W 

sin @g 

Figure 17.- Slanted feed parallel-plate waveguide geometry. 
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and the regions where the appropriate wedge-diffracted fields are applicable are given 
in the following table: 

I Ray I Region 

The creeping-wave field is the same as that given by equation (68) applicable in the 
regions given in table I. 

The computed radiation patterns for  this mode of operation are shown in figure 18 
and a field plot for one cylinder in figure 19. 
investigated is oriented a t  an angle @ = - ~ / 2 .  This agrees with the physical reasoning 
by observing the reflection mechanism of the r ays  from edge 0 by the side of wedge 2. 
It can then be concluded that by slanting the feed waveguide at a given angle, it will orient 
the maximum radiation in a direction other than The discontinuities observed 
in the solution which considers only single-double diffractions occur because third- and 
higher-order diffractions which are neglected become significant. 

The maximum radiation for the cases 

$ = 0'. 

Equatorial -Plane Pattern of Circumferential Slots 

Operating in TEIO Mode 

The TEIO mode propagation in a parallel-plate guide can be represented by two 
plane TEM waves reflecting obliquely back and forth between the waveguide walls with 
the electric field parallel to the edge of the walls. The approximation of the parallel- 
plate-cylinder geometry by a set of wedges each formed by a waveguide wall and a 
tangent plane to the cylinder surface at the edge point will not satisfy the tangential 
electric-field boundary conditions. In order to overcome this obstacle, the half -plane 
approximation is used as a model. The boundary-value solution for a circumferential 
slot operating in the TEIO mode and mounted on a circular cylinder exists and is used 
for comparison. 
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~ Dilfracied-field lmuiiiole diffractions) 

E = 40°. 180" 

Figure 18.- Radiation patterns of axial i n f i n i t e  slot o n  c i rcu la r  conducting cylinder w i t h  slanted feed (TEN mode). 
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Dif frac ted- f i e ld  (mul t ip le  d i f f r a c t i o n s )  
- - - - - -Dif fracted-f ie ld  ( s ingle-double  d i f f r a c t i o n s )  

$-I 

270° 

Figure 19.- Field plot of axial i n f i n i t e  slot on c i rcu la r  conductirlg cyl inder w i th  slanted feed (TEM mode). 

The two-dimensional diffraction geometry is shown in figure 20. It w a s  found by 
comparison with the boundary -value solution that one approximation was to replace the 
edge 0 geometry by a half-plane (n = 2) for the first-order diffraction and by a finite 
wedge (n # 2) for second- and higher-order diffractions for the 0' to 180° pattern mea- 
sured in the counterclockwise direction. The edge @ geometry w a s  replaced by a 
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Figure 20.- Diffraction geometry for a TElO mode circumferent ia l  slot. 

finite wedge for all o rde r s  of diffraction. 
tions of edge 0 a r e  valid for edge @ and vice versa .  

For the 180' to 360' pattern, the approxima- 

The wedge-diffracted field is given by 
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where RD1, (1) RD1, (h) RD2, (1) and R g i  are given by equations (43), (46), (44), and (47) 

with 4 = 90°, R (-4) = 0, and RIP = 0. The creeping-wave contribution is given g D1 
by 

where 

as given by equation (73) and 

The regions where the appropriate wedge-diffracted and creeping-wave fields are appli- 
cable a r e  identical to those shown in table I for the TEM mode. 

The computed results using this approximation are shown in figure 21 along with 
the boundary-value solution. It is noted that the solution which includes higher-order 
diffractions gives the best results. A noticeable discontinuity is present at the shadow 
boundary when higher-order diffractions are neglected. 

Another approximation of the parallel-plate-cylinder geonietry would be a set of 
half-planes (n = 2 for all o rde r s  of diffraction) as was t rue for the TEM mode. Com- 
puted results using this model a r e  shown in figure 22. A good agreement is indicated. 
The discontinuity in the 
present since higher -order diffractions are neglected. 

$ = *90° directions for the single-double diffractions is again 
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Figure 21.- Radiation patterns of c i rcumferent ia l  slot on c i rcu la r  conducting cylinder using half-plane and f ini te wedges (TE10 mode). 
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Figure 22.- Radiation pattern of circumferential slot on c i rcular conducting cylinder using half-planes (TE10 mode). 

,270' 
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Elevation-Plane Pattern of Circumferential Slots on 

Finite-Length Cylinders Operating in TEM Mode 

The elevation-plane pattern (F( e)) 4=o for a finite-length conducting cylinder can 
be computed by using wedge-diffraction techniques. The diffracted fields from the ends 
of the cylinder and their contribution to the overall radiation pattern can be readily com- 
puted. Although boundary -value solutions for circular conducting cylinders of infinite 
length exist (refs. 1 and 2bno solution which takes into account finite length is available. 
To check the validity of the technique, experimental results were used for comparison. 

The two-dimensional geometry of a slotted cylinder operating in the TEM mode is 
shown in figure 23. 
given by 

The diffracted field for the TEM mode from edges 0 and @ is 

- j  kr + -  ( O 2 

r5 \ 

I I - 
Figure 23.- Diffraction mechanism geometry for elevation-plane pattern. 
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where 

-jkw sin eo 
RD ('0) = e 1 

and Rl(Oo) and R2 ( B o )  a r e  given'by equations (38) and (34). Diffractions from 

the aperture in the 8, = m / 2  directions will be diffracted by wedges 3 and 4 which in 
turn will be diffracted by wedges 1, 2, 5, and 6. This process  continues to higher-orders 
of diffraction. 

The reciprocity principle (see appendix) is applied to calculate the singly diffracted 
field by wedge 3; this leads to 

where 

The singly diffracted ray  from wedge 3 in the direction of wedge 5 
diffracted again and its contribution is 

where 

Diffractions from wedge 5 in the directions of wedge 3 (€I5 = 0") and wedge 6 €I5 = 270°) 
will cause additional diffractions. If the length of the cylinder is assumed to be several 
wavelengths, the diffractions by wedge 6 a r e  negligible. However, the second-order 
diffractions from wedge 3 are given by 

( 
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where 

The same procedure used to calculate the fields diffracted by wedges 3 and 5 can 
be applied to calculate the fields diffracted from wedges 4 and 6 being initiated by the 
aperture diffractions in the 8, = -a/2 direction. 

The first-order diffracted fields from wedges 4 and 6 are given by 

where 

and 

where 

and the second-order diffracted field from wedge 4 by 

-j  (kr4 + z )  
Eg1(r4,e4) = e /K4 43 (e4 

where 

(9 3) 
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Equations (80) to (93) were all based upon the validity of the reciprocity principle as 
outlined in the appendix. 

Shifting the coordinates from the individual edges to the center of the cylinder and 
assuming the far-field approximations 

for phase t e rms  and 

for amplitude t e r m s  with 

where 

ro = r - % c o s  e 
2 

r3 = r - d cos ( y  - e) 

r4 = r + d cos (a - y - e) 

r5 = r - d cos (a - y - e) 

eo = e3 = e4 = e5 = e6 = e 

(94) 

y =  tan-1 a L (98) 

the diffracted fields, with the e 2akr factor being suppressed, a r e  shown in 
table II. 

It should be pointed out that additional diffractions by each wedge a r e  present and 
can very conveniently be accounted for.  However, fo r  cylinders with several wavelength 
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radius and length such diffractions have 
secondary effects and can be neglected. TABLE E.- WEDGE-DIFFRACTED FIELDS FOR ELEVATION-PLANE PATTERN 

It is apparent from figure 23 that the 
two-dimensional geometry used for the 
formulation of the elevation-plane pat- 
tern of a finite-length slotted cylinder 
is identical to the cross-section con- 
figuration of a slotted finite-width 
ground plane. 

The computed resul ts  using the 
fields from table I1 are shown in fig- 
u re  24 where they are compared with 
experimental data. Very good agree- 
ment between theory and experiment 
is indicated. The ripples in the 

OF FINITE-LENGTH CYLINDER IN DIFFERENT REGIONS 

3iiiraction wedge 

l a n d 2  

3 

4 

5 

6 

- E < e < IL region are present because of the diffraction contribution from the edges of 2 2 
the cylinder, and they become negligible as the length becomes large. 
results were obtained from slotted ground plane models since it was deduced that their 
two-dimensional geometry is identical to that of a slotted cylinder. 

The experimental 

The beamwidth of the main lobe is decreased as the aperture width is increased. 
The smoothest pattern and the lowest back lobes are obtained for the aperture whose 
width is exactly 1 wavelength since complete cancellation of the fields diffracted from 
wedges 1 and 2 in the 
region which are much in evidence in figures 24(a) and (b) do not appear in figures 24(c) 
and (d) because the fields in the e = *x directions a r e  very weak and any diffractions 2 
from the edges are negligible. Additional lobes appear as the aperture width is larger  
than 1 wavelength. 

e = *E directions occurs. The ripples in the -90' < e < 90' 
2 

Another formulation for the diffractions from wedges 1 and 2 would be  to use con- 
tinuous double diffractions. (See ref. 36.) In this case, doubly diffracted r ays  from 

wedge 2, RD2(8), (2) 

from wedge 1, RD1(8), (2 ) 

are neglected in the 0' < e < 90' region while doubly diffracted r ays  

are neglected in the -90' < e < 0' region. Computed results 

using the above formulation are shown in figure 25 where they are compared with experi- 
mental results. Again, very good agreement between theory and experiment is indicated. 
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1-0 
"Q 

270' 

2 

. - - Wedae-diffraction no 

_____) no 

270' 

180" 
(C) !/A = 29.65: 

a/A = 1.13; 
w / h  = 1.00. 

(d) l / h  = 29.65; 
a/h = 1.13; 
w / h  = 2.23. 

Figure 24.- Elevation-plane patterns of f inite-length cylinder (TEM mode). 
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l a )  l / A  = 29.65: 
a h  = 1.13; 
w/A = 0.42. 

1-0 

1 

( b )  Zh = 29.65; 
a h  = 1.13; 
w/A = 0.62. I - e  

a h  = 1.13; 
WA = 1.00. 

Figure 25.- Elevation-plane patterns of f inite-length cylinder using cont inuous double diffractions (TEM mode). 

a A  = 1.13; 
w/A = 2.23. 

51 

I 



ELLIPTICAL CYLINDER RADIATION 

Flush-mounted antennas a r e  commonly used on space vehicles, missiles, and air- 
craft. However, their radiation properties usually cannot be predicted analytically 
because the geometric shape of the body to which they are mounted does not conform to 
a coordinate system where the wave equation is separable. The method used to analyze 
the radiation properties of axial slots on circular conducting cylinders can be applied to 
cylindrical-shaped bodies of arbi t rary convex c r o s s  section. One geometry of wide 
interest is an elliptical cylinder which can be used as an approximate model for the wings 
of an a i rc raf t  or  the fins of a missile. 

The far-field radiation produced by a slot of a rb i t ra ry  shape on the surface of an 
elliptical cylinder of infinite length using modal solutions has  been carr ied out by Wait  
(ref. 5). Computations using the modal solution are numerically convenient only for very 
thin-shaped elliptical cylinders, and as the size increases  (larger ka and kb) higher - 
order  t e rms  must also be included for convergence. However, the analysis using wedge 
diffraction and creeping wave theory can be used fo r  computations of any size and shape 
of an elliptical cylinder. As the physical dimensions increase, the accuracy of the 
obtained data increases  because diffraction coefficients Dmh and decay constants CYmh 
used in the analysis a r e  derived from asymptotic s e r i e s  of canonical boundary-value 
problems for X - 0. 

Equatorial-Plane Pattern of Axial Slots Operating in TEM Mode 

The two-dimensional geometry for an axial slot mounted on an elliptical cylinder 
is similar  to that for a slot on the circular cylinder and is shown in figure 26 for the 
TEM mode. The junctions formed by the wal ls  of the parallel-plate waveguide and the 
planes tangent to the surface of the cylinder at the edge points a r e  approximated by a 
pair of infinite wedges of finite included angle WA = (2 - n)r. The wedge-diffracted 
field is given by equation (61) and is repeated he re  as follows: 

- jkw sin Go 
(Go) + R2 (@,)e 1 e 

ED ('0' @o) = 

With the use of the far-field approximations 

ro = r - r0 cos  @ cos  p 
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Observation 
point 

LIT REGION 

Figure 26.- Lit and shadow regions for elliptical cylinder. 

for phase t e r m s  and 

ro = r 

for amplitude t e r m s  with 

this equation (eq. (61)) reduces to 

where 
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q l n  
2a Yo = 

with R1(@) and RZ(@) as defined by equations (38) and (34). 

The creeping-wave field is given by equation (60) and is repeated here  as follows: 

From the geometry of figure 27, the following far-field approximations may be obtained: 

and 

J s2 =: r + r cos 61 

for phase t e r m s  and 

s1 = s2 = r 

for amplitude terms. Equation (60) then reduces to  
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Figure 27.- Far-zone creeping-wave field coordinates. 

where 

Doh(P1) jkTcos 61 
PA = RA 

Doh(Q1) e 

D0h(P2) e -jkTCOS 61 
P = R B  

Doh(Q2) 
B 



with ED being obtained from equation (102). 

Expressions for the radius of curvature and differential arc length for an ellipse 
can be obtained by applying the basic geometric definitions of each 

d s  = d m  

+ (y+j3'2 

I y" I P =  

x = r sin 4 

y = r cos @ 

Using equations (115), (117), and (118) leads to 

dx = 7 cos  $J d @  + sin @ d r  

dy = -7 sin @ d$J + cos  @ d r  

1/2 
d s  = k2(d@)2 + ( d r ) l  

b sin C#I 

y' = -(a) cos  4 

3/2 
b (a2 cos2 $J + b2 sin2 @ )  y" = - 
a5  COS^ @ 
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Substituting equations (117) and (118) into the equation for an ellipse in rectangular 
coordinates 

2 2  

a2 b2 
L+L= 1 

leads to 

ab 
1/2 

7 =  

(a2 cos2 $ + b2 sin2 $) 

d 7  = ab(a2 - b2)sin $ cos 

(a2 cos2 $ + b2 sin 

Substitution of equations (122) and (123) into equation (116) and of equations (125) and (126) 
into equation (121) yields 

1 a4 cos2 $ + b4 sin2 
= %(a2 cos2 $ + b2 sin2 

1/2 
(a4 cos2 $ + b4 sin2 $) 
(a2 cos2 $ + b2 sin 

d$ d s  = ab 

The a r c  length and complex attenuation factor of the creeping wave on the elliptic surface 
can then be expressed as 

1 4 1 2  (a4 cos2 + + b4 sin2 $)3/2 1/2 d$ 
t = d s  = ab 

11 $11 (a2 cos2 $ + b2 sin2 $) 

1/3(3$)2/3 2 s 9 1 2  ab d$ f aoh(p) d s  = % - 
1/2 $11 l a 4  cos2 $ + b4 sin2 $)( a2 cos2 $ + b2 sin2 $1 

(130) 
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where 

@ll trapping point angle of creeping wave 

@12 exit point angle of creeping wave 

The points of trapping, Q1 and Q2, a r e  given by equations (104) and (105). To deter-  
mine the points of reradiation, P1 and Pa, of each creeping wave on the surface of the 
elliptical cylinder, the vector c r o s s  product will be utilized (ref. 24). As shown in fig- 
ure  27 for the observation angle @ with far-field observations being assumed 

where 

(132) fi = -2 c"os @ + f sin @ = Unit vector perpendicular to line from origin of 
cylinder to observation point 

Applying equation (131) and using the equation for an ellipse in rectangular coordinates 

2 2  

a2 b2 
x -+Y=1  

lead to, for reradiation point P1, 
2 -a cos @ 

(a2 cos2 @ + b2 sin @ 2 )1/2 

2 )1/2 

X l ( P 1 )  = 

Yl(P1) = 
b2 sin Cp 

(a2 cos2 Cp + b2 sin @ 
(134) 

@l = tan- 1 x1 (pl)  
y l ( p l )  
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and, for reradiation point P2, 

I a2 cos 4 
x2(p2)  = 

(a2 cos2 $ + b2 sin 

-b2 sin $ 

2 )1/2 
Y2(P2) = 

(a2 cos2 $ + b2 sin $ 

The angles p and 5 are givenby 

(135) 

The wedge-diffracted and creeping-wave fields, with the e-jkr/fi factor being sup- 
pressed, a r e  given by 

tl = 1'" d s  
$11 

t2 = 1'22 d s  
$2 1 

In general, the total field is given by 



where the appropriate fields must be considered in each region as shown in table III. 

TABLE m.- WEDGE-DIFFRACTED AND CREEPING-WAVE FIELDS FOR EQUATORIAL-PLANE PATTERN 

OF ELLIPTICAL CYLINDER IN DIFFERENT REGIONS 

Wedge-diffracted field, 
ED(@) 

(R1 + RZe-jkw sin @) Jzz 

0 

Radiation patterns computed by using the fields f rom table III in their respective 
regions a r e  shown in figures 28 to 30. Experimental models were constructed and the 
obtained data were  used for comparison since boundary-value solutions are numerically 
convenient only for very thin elliptical cylinder. Harrington (ref. 4) points out that the 
equatorial radiation pattern (0  = 90° plane) for a circular cylinder with finite axial slot 
is identical to that for a circular cylinder with an infinite axial slot. It is assumed that 
such a relation holds for an elliptical cylinder, and the experimental results were  obtained 
by using finite axial slots. The experimental models were also of finite length of about 
30 wavelengths; diffractions from the edges of the cylinders should then be negligible. 
Dimension construction accuracies were within &/25 and surface irregularit ies within 
jA/50. All measurements were performed at a frequency of about 10 GHz. 

The agreement between computed and experimental patterns is good particularly in 
the forward hemisphere. E r r o r s  of the order  of 2 to 3 dB are obtained in the penumbra 
region and they indicate that further improvement could be made on the approximations of 
the parallel-plate-cylinder geometry by a wedge and on those implicit in equations (113) 
and (114). The use of the half-plane wall for certain diffraction processes  would yield 
improved results near the penumbra region as has  been discussed previously for the c i r -  
cular cylinder. In general, the e r r o r s  in the shadow region are of the same order  of 
magnitude, and they are quite acceptable for determining possible interference and noise 
that might be introduced from other systems through these back lobes. 
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*--I *-I 
Diffracted-field O0 

90' 

(a) ka = 40; 
kb = 30; 
w/A = 0.339. 

lb) ka = 40; 
kb = 15; 
w/A = 0.339. 

0-1 
no 

180' (c) ka = 40; 
kb = 8; 
w/A = 0.339. 

(d) ka = 21.336; 

w/A = 0.339. 
kb = 8; 

Figure 28.- Radiation patterns of axial infinite slot on elliptical conducting cylinder using finite wedges ITEM mode). 
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Diffracted-field _ _ _ _  

(a) ka = 10.666; 
kb = 8; 
w/h  = 0.339. 

,773; 

w / h  = 0.342. 
180O kb = 8.081; 

Figure 29.- Comparison of radiation patterns fo r  smaller size ell iptical cylinder (TEM mode). 

(b) ka = 10.560; 
kb = 7.921; 
w/h  = 0.336. 
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For elliptical cylinders with constant major axis but decreasing minor axis (thinner 
shape ellipse), the rate of attenuation of the creeping waves, whose main contribution is 
in the shadow region, is larger.  However, the lit-region radiation, whose primary source 
is the wedge-diffracted fields, is essentially unaffected as shown in figures 28(a) to (c). 
The creeping-wave fields are strongly influenced by the radius of curvature which is 
rapidly changing whereas the wedge-diffracted fields depend on the included angle of the 
wedges WA which remains essentially constant. 

For the small elliptical cylinder (ka = 10.666, kb = 8) of figure 29(a), slightly 
larger  variations and asymmetries between experiment and theory are noted. 
4 . 0  percent changes in frequency (figs. 29(b) and (c)), the variations and asymmetries 
are even greater and it is believed that the physical construction tolerances of the ellip- 
tical c r o s s  section are critical for  the measurements on this size body. 
elliptical cylinder the radius of curvature of the surface near the major axis is small 
and any diffractions from that region would not be very accurate since the asymptotic 
series assumption of large physical dimensions is not well satisfied. 

For 

For a thin 

In figure 30, the experimental pattern of a thin elliptical cylinder (ka = 40, 

A good agreement is noted in the 90' < $I < -90' region. 

kb = 8) 

How- 
is compared with a theoretical curve of a finite-size ground plane obtained by using wedge 
diffraction techniques. 
ever, in the 90' > C#J > -90' region the ripples predicted by the computed curve of the 
ground plane do not appear in the experimental curve for the thin elliptical cylinder. 
The surface of the cylinder is smooth and has  no sharp edges to contribute diffractions 
in the lit region for the ripples to appear. 
the pattern is interesting to the antenna designer who would certainly prefer the smooth 
pattern. Cylindrical caps on the sides of the ground plane would reduce the ripples and 
smooth the pattern. 

The fact that edge-diffracted fields do disturb 

To check the validity of the half-plane (n = 2) approximation for the parallel-plate- 
cylinder geometry instead of a finite wedge (n # 2), equations (138) and (139) were used 
with modified n ' s  and the computed results were compared with experimental results. 
It was found by comparison, like for the circular cylinder, that the best approximation 
was to replace the edge 0 geometry by a half-plane (n = 2) for the first-order diffraction 
and by a finite wedge (n # 2) for second- and higher-order diffractions for the Oo to 180' 
pattern measured in the counterclockwise direction. The edge @I geometry w a s  replaced 
by a finite wedge for all o rde r s  of diffraction. For the 180° to 360' pattern, the approxi- 
mations of edge 0 geometry are valid for edge @ and vice versa.  
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( t h i n  e l l i p t i c  c y l i n d e r )  

Calculated (ground plane) - - - - - - 
4. r , w . '  +----2- I @-I 

170' 

180' 

Figure 30.- Radiation pattern of a t h i n  elliptical cylinder and a f inite-size ground plane (TEM mode). 
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The computed resul ts  using the half -plane and finite-wedge approximation are 
shown in figure 31, where they are compared with the experimental curves. It is 
seen that these approximations result  in better accuracies in the penumbra region 
than the finite wedge approximation but larger  variations exist in all other regions. 
As concluded previously, the solution used then depends on the region of space of 
interest. It should be noted that computed results for single-double diffractions and 
multiple diffractions shown in figures 28, 29, and 31 are almost the same, and it is 
rather difficult to distinguish any variations between the two. 

Equatorial-Plane Pattern of Circumferential Slots 

Operating in TEIO Mode 

As was explained previously, the TEIO mode is represented by two plane TEM 
mode waves reflecting obliquely back and forth between the waveguide walls with the 
electric field being parallel to the edge of the walls. The finite-wedge approximation 
for the parallel-plate-cylinder geometry will not satisfy the boundary conditions and 
the half -plane approximation will be used. 

For a circumferential slot operating in the TEIO mode and mounted on a circular 
cylinder it was found that the best  approximation was to replace edge 0 by a half- 
plane (n = 2) for the first-order diffraction and by a finite wedge (n # 2) for the second- 
and higher-order diffractions for  the 0' to 180' pattern measured in the counterclock- 
wise direction. The edge Q geometry was replaced by a finite wedge for all o rde r s  
of diffraction. For the 180' to 360' pattern, the approximations of edge 0 geometry 
a r e  valid for edge 0 and vice versa.  

This approximation is also used for the elliptical cylinder. The wedge-diffracted 
field is given by equations (73) to (75) with n modified as explained previously. The 
creeping-wave field is given by 
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Figure 31.- Radiation patterns of axial slot on elliptical conducting cylinder us ing  half-plane and f i n i t e  wedges (TEM mode). 
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.762. 

Figure 32.- Radiation patterns of c i rcumferent ia l  slot on elliptical conducting cylinder using half-plane and f in i te  wedges (TE10 mode). 
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where 

ab d @  
11 [(a4 cos2 @ + b4 sin2 @) ( a2 cos2 c$ + b2 sin2 $1 1/2 

The regions where the appropriate wedge-diffracted and creeping-wave fields are appli- 
cable a r e  identical to those shown in table 111 for the TEM mode. 

The computed resu l t s  for the TEIO mode slot on an elliptical cylinder a r e  shown in 
figure 32. As for the circular cylinder, the single-double diffraction solution has  a dis- 
continuity in the 
The thin-walled guide approximation (n = 2 for all o rde r s  of diffraction) could also be 
used as was demonstrated for the circular cylinder. Good results would also be obtained 
in this case. 

@ = *90° directions because higher-order diffractions are neglected. 

CONCLUDING REMARKS 

Wedge diffraction and creeping wave theories have been used to analyze the radia- 
tion properties of slots on cylindrical bodies. By using this technique, the computed 
patterns for circular and elliptical cylinders have been favorably compared with existing 
modal solutions and experimental results. 

The concept of a hybrid solution utilizing wedge diffraction and creeping wave 
theories has  been established in solving aperture antenna problems on cylindrical bodies 
that have not been considered previously from this point of view. The first attempt was 
to apply this technique to a circular cylinder with a known boundary-value solution for 
comparison of the results. It was then extended to a more complicated geometry such 
as the elliptical cylinder where the computations using the boundary-value solution a r e  
not very convenient but where experimental data a r e  available. Radiation properties of 
finite-size cylinders were also analyzed and the contribution to the overall pattern from 
the edges was taken into account. 

Once a good understanding of the radiation mechanism is established, the technique 
can now be extended to other more complex geometries to include slots on spheres, pro- 
late spherioids, and ogives. 
metric shapes should also be considered. 

Problems involving dipoles on the surface of such geo- 
Experimental data and modern computational 
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methods such as the point-matching boundary-value technique should be used in combi- 
nation with the geometrical theory of diffraction to obtain improved values and gain 
better understanding of the radiation mechanisms involved. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., November 13, 1969. 
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APPENDIX 

DIFFRACTION BY A PERFECTLY CONDUCTING WEDGE 

Consider a two-dimensional wedge and a line source to be situated in space as 
shown in figure 33. The faces of the wedge are formed by two semi-infinite intersecting 
planes. The infinitely long line source is parallel t o  the edge of the wedge, and its posi- 
tion is described by the coordinate (ro,eo). The typical field point is denoted by (I-,@). 

The line source is assumed to have unit strength and t ime dependence of the form ,jut. 

The Green's function for this radiating system can be written as (ref. 19) 

G = 1 2 E, Jm(kr) H$)(kro)[cos :(e - eo) f cos E(@ + eo) 
n 1 - - n 

m=O n n 
(145) 

if ro > r. For the case ro < r, r and ro a r e  interchanged. In this expression em 
is the Neumann number which is equal to 1 if m is 0; otherwise it is equal to  2. 
plus sign between the two cosine t e rms  is used if the boundary condition is of the homo- 

The 

geneous Neumann type - = 0 on both faces of the wedge . For the homogeneous 

Dirichlet boundary condition (G = 0 
6: 

on both faces of the the minus sign is used. 

F i e l d  p o i n t  

\ r  
L i n e  s o u r c e  

Figure 33.- Line source and dif fract ing wedge. 
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This convergent s e r i e s  is an exact solution to the time harmonic, inhomogeneous wave 
equation for the problem of a radiating line source and wedge embedded in  a linear, iso- 
tropic, homogeneous, 10s sle ss medium. 

Many t imes  it is necessary to  determine the total radiation field when the line 
source is far removed from the vertex of the wedge. In such cases, equation (145) can be 
simplified by replacing the Hankel function by the first t e rm of its asymptotic expansion, 
that is, by the relation 

This substitution reduces G to  the form 

where 

with ED and EG being the total diffracted and geometrical optics fields, respectively, 
and E, the se r i e s  form of the Green's function describing the total field created by the 
diffraction of a plane wave by a wedge. 

An asymptotic expansion for E in inverse powers of kr is very useful for com- 
putational purposes, because of the slow convergence of equation (148) for large values 
of kr. In order  to derive an asymptotic expression for E by the standard method of 
steepest descents, it must first be transformed into an integral or integrals of the form 

I 
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and then evaluated for large kr by means of the method of steepest descents. Such a 
procedure leads to the expression for  the diffracted field for a plane wave incident on a 
wedge of included angle (2 - n ) r  shown in figure 34 t o  be (ref. 19) 

where the plus sign applies for the polarization of the electric field perpendicular to the 
edge 

= o  aE 
( d w  e dge 

and the minus sign applies for polarization parallel to the edge 

I n c i d e n t  plane 

Figure 34.- Diffraction by a wedge of included angle (2 - nh. 
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The wedge-diffraction function Vg(r, Qc/7Qo, n) for a plane wave has also been deter- 
mined by Pauli in reference 18. 

The form of the diffraction function is defined as 

where 

g = 1 + k o s  (I,L f Go) - 2naN] (153) 

and N is a positive or negative integer or  zero which most nearly satisfies the equation 

(154) 
2 n ~ N  - (Q f Qo) = -P 

2 n ~ N  - (Q f Qo) = +a 

Equation (152) contains the leading t e rms  plus higher-order t e r m s  which a r e  negli- 
gible for large values of kr. 
form presented by Pauli (ref. 18) and given by 

For large values of krg, equation (151) reduces to the 

The diffracted field of equation (155) is that from which the asymptotic diffraction coeffi- 
cients of the geometrical theory of diffraction a r e  obtained. (See ref. 10.) This expres- 
sion is not valid in  the shadow boundary because g = 0 there. The geometrical optics 
field EG is given by equations (5) to (7). 

The solution for cylindrical wave diffraction at large distances from the edge can 
be determined by the use of the principle of reciprocity together with the solution for 
plane wave diffraction. (See ref. 6.) For plane wave incidence the diffracted field at 
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observation point P of cylindrical coordinates (r,q) as shown in figure 35(a) is given 
by VB(r, q$q0, n )  of equation (151). Now consider the situation in figure 35(b) in which 
the wedge is illuminated by a cylindrical wave with its source at (xo, to). By reciprocity 
the diffracted field VA in the direction 5 is equal to the diffracted field VB which is 
located at the point (r=xo, +=to) with a plane wave incident f rom the direction Qo = 5. 

(a) Incident plane waves. 

I n c i d e n t  c y l i n d r i c a l  
wave 

\ 

(b) Incident cyl indr ical  waves. 

Figure 35.- I l lustrat ion of reciprocity. 
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